Annealing

furnace
Background
Stainless steels are often heat treated; the nature of this treatment depends on the type of stainless steel and the reason for the treatment. These treatments, which include annealing, hardening and stress relieving, restore desirable properties such as corrosion resistance and ductility to metal altered by prior fabrication operations or produce hard structures able to withstand high stresses or abrasion in service. Heat treatment is often performed in controlled atmospheres to prevent surface scaling, or less commonly carburisation or decarburisation.

Annealing
The austenitic stainless steels cannot be hardened by thermal treatments (but they do harden rapidly by cold work). Annealing (often referred to as solution treatment) not only recrystallises the work hardened grains but also takes chromium carbides (precipitated at grain boundaries in sensitised steels) back into solution in the austenite. The treatment also homogenises dendritic weld metal structures, and relieves all remnant stresses from cold working. Annealing temperatures usually are above 1040°C, although some types may be annealed at closely controlled temperatures as low as 1010°C when fine grain size is important. Time at temperature is often kept short to hold surface scaling to a minimum or to control grain growth, which can lead to “orange peel” in forming.

Cleaning
Before annealing or other heat treating operations are performed on austenitic stainless steels, the surface must be cleaned to remove oil, grease and other carbonaceous residues. Such residues lead to carburisation during heat treating, which degrades corrosion resistance.